1. Корпус (изоляционная пластмасса). 2. Вторичная обмотка. 3. Выводы первичной обмотки (низкого напряжения). 4. Сердечник. 5. Первичная обмотка. 6. Вывод вторичной обмотки (высокого напряжения). 7. Скоба крепления выключателя зажигания. 8, 12. Корпус выключателя зажигания. 9, 16. Замок. 10, 13. Контактная часть. 11, 15. Облицовка. 14. Колодка для подключения реле зажигания. 17. Фиксирующий штифт. 18. Запорный стержень противоугонного устройства. 19. Контактная втулка. 20. Изолятор. 21. Контактный стержень. 22. Корпус свечи. 23. Стеклогерметик. 24. Уплотнительная шайба. 25. Теплоотводящая шайба. 26. Центральный электрод. 27. Боковой электрод. 28. Наконечник для присоединения к катушке зажигания. 29, 34. Защитный колпачок. 30. Наружная изолирующая оболочка. 31. Внутренняя оболочка. 32. Шнур из льняного волокна. 33. Токопроводная обмотка. 35. Наконечник для присоединения к свече зажигания. 36. Реле зажигания. 37. Присоединительная колодка. 38. Выключатель зажигания.
а — отверстие для фиксирующего штифта
На автомобилях «Ока» применяется бесконтактная система зажигания высокой энергии. У нее вместо прерывателя (с контактами) для размыкания цепи низкого напряжения применяется электронный коммутатор, который размыкает и замыкает цепь при запирании и отпирании мощного выходного транзистора (т. е. без контактов).
К узлам системы зажигания относятся: катушка зажигания, выключатель зажигания, датчик момента искрообразования, коммутатор и провода высокого и низкого напряжения. Обычно в системах зажигания применяется еще распределитель зажигания для поочередной подачи импульсов высокого напряжения к цилиндрам двигателя. Здесь же распределителя зажигания нет, а импульсы высокого напряжения подаются одновременно к свечам зажигания обоих цилиндров и дважды за время рабочего цикла двигателя (за два оборота коленчатого вала). Таким образом, один импульс в каждом цилиндре является рабочим, а второй — холостым.
Катушка зажигания
Катушка зажигания — марки 29.3705 высокой энергии, с двумя высоковольтными выводами и с разомкнутым магнитопроводом. Она крепится двумя гайками к кронштейну на брызговике левого колеса.
Катушка зажигания имеет сердечник 4, набранный из тонких пластин электротехнической стали. Поверх сердечника на картонном каркасе намотана первичная (низковольтная) обмотка 5, а затем вторичная (высоковольтная) обмотка 2. Слои обмоток разделены электроизоляционной бумагой, а между собой обмотки изолированы пластмассой. Концы первичной обмотки припаяны к штекерам 3. а вторичной — к гнездам 6. Сердечник с обмотками залит пластмассой. Сопротивление первичной обмотки составляет (0,5±0,05) Ом, а вторичной — (11+1,5) кОм.
На автомобилях «Ока» может также применяться взаимозаменяемая катушка зажигания типа 3012.3705. Она представляет собой трансформатор с сердечником, набранным из Ш-образных пластин электротехнической стали. Обмотки запиты изоляционной пластмассой. Сопротивление первичной обмотки у катушки 3012.3705 составляет (0,35±0,035) Ом, а вторичной — (4,23±0,42) кОм.
Коммутатор
Электронный коммутатор служит для прерывания тока в первичной цепи катушки зажигания по сигналам датчика момента искрообразования. Коммутатор устанавливается в отсеке двигателя и крепится двумя гайками на кронштейне, приваренном к щитку передка.
На автомобилях «Ока» могут применяться коммутаторы различных марок: 3620.3734, или ВАТ 10.2, или HIM-52, или 76.3734, или РТ1903, или PZE4022, или К563.3734. Все они взаимозаменяемы. Коммутаторы первых двух марок собраны из отдельных элементов — транзисторов, микросхем, резисторов и т. д., спаянных в общую схему на печатной плате из фольгированного стеклотекстолита. Для прерывания тока служит мощный высоковольтный транзистор типа КТ-848А, специально разработанный для работы в системе зажигания высокой энергии. Печатная плата вместе с выходным транзистором размещены в литом алюминиевом корпусе.
Коммутаторы марок ВАТ 10.2 и HIM-52 имеют гибридное исполнение, т. е. все их элементы объединены в одной большой интегральной схеме. Конструктивно эти коммутаторы оформлены в небольшом прямоугольном пластмассовом корпусе, закрепленном на металлической пластине.
Коммутатор поддерживает постоянную величину импульсов тока (схема II, лист 33) на уровне 8...9 А независимо от колебаний напряжения в бортовой сети автомобиля. В схеме коммутатора имеется устройство для автоматического уменьшения длительности импульса тока в первичной обмотке катушки зажигания при увеличении частоты вращения коленчатого вала двигателя. Кроме того, предусмотрено автоматическое отключение тока через катушку зажигания при неработающем двигателе, но включенном зажигании. Через 2...5 с после остановки двигателя выходной транзистор коммутатора запирается, не создавая при этом искры на свечах зажигания.
Выключатель зажигания
Выключатель зажигания предназначен для включения и отключения цепей зажигания, пуска двигателя и других потребителей. Он крепится на кронштейне вала рулевого управления с помощью скобы 7 и может быть двух взаимозаменяемых типов: 2108-3704005-40 отечественного производства и KZ-813, изготовляемый в Венгрии. Выключатели зажигания применяются совместно с реле зажигания типа 113.3747-10, которое закреплено под панелью приборов.
Конструктивно выключатели KZ-813 и 2108-3704005-40 выполнены по-разному. Выключатель зажигания KZ-813 имеет цилиндрический корпус 12, в который вставляются контактная часть 13 и замок 16, соединенные винтами. Замок закреплен в корпусе винтом и штифтом 17, входящим в отверстие а корпуса. Чтобы вынуть замок из корпуса, необходимо утопить штифт 17. Снаружи выключатель зажигания закрыт пластмассовой облицовкой 15.
У выключателя зажигания 2108-3704005-40 замок 9 находится в корпусе 8. Контактная часть 10 надевается на замок и крепится к корпусу винтом. Снаружи выключатель также закрыт пластмассовой облицовкой 11.
Ключ выключателей зажигания реверсивный, т. е может вставляться в замок в любом положении. У обоих выключателей зажигания в замке имеется блокировка против повторного включения стартера без предварительного выключения зажигания, т е. невозможен повторный поворот ключа из положения I в положение II без предварительного возвращения его в положение 0. Кроме того, имеется противоугонное устройство. Принцип его действия заключается в том, что после вынимания ключа из замка в положении III («Стоянка»), из корпуса выдвигается запорный стержень 18, входит в паз вала рулевого управления и блокирует его.
На схеме коммутации показано, какие контакты замыкаются при различных положениях ключа. Напряжение от источников питания подводится к контактам «30» и «30/1», а снимается с контактов «INT», «50», «15/2» и «Р». Контакт «15/1» (для включения цепи зажигания) не имеет непосредственного выхода на штекеры колодки 37, а только через реле 36 зажигания.
Свеча зажигания
Свеча зажигания предназначена для воспламенения горючей смеси в цилиндрах искровым разрядом между электродами. На автомобилях «Ока» могут быть установлены свечи зажигания FE65PR или FE65CPR, изготовленные в Боснии. Отличие свечи FE65CPR в том, что у нее в центральном электроде имеется медный сердечник для улучшения теплоотвода от конца электрода к корпусу (об этом говорит буква С в обозначении свечи). Буква F в обозначении указывает, что корпус свечи имеет резьбу М14Х1.25, а вторая буква (Е) — что длина этой резьбы 19 мм. Цифры (65) характеризуют калильное число свечи. Буква Р означает, что тепловой конус (юбка) изолятора выступает за торец корпуса, а буква R — что свеча обладает определенным внутренним сопротивлением для подавления радиопомех.
Могут также устанавливаться аналогичные свечи отечественного производства А17ДВР, или А17ДВРМ, или А17ДВРМ1.
Конструкция свечей неразборная. В стальном корпусе 22 завальцован керамический изолятор 20, внутри которого находится составной электрод, состоящий из контактного стержня 21 и центрального электрода 26. Боковой электрод 27 приварен к корпусу. Нижняя часть стержня 21 и верхняя часть центрального электрода залита специальным токопроводным стеклогерметиком 23 с сопротивлением 4...10 кОм. Он не допускает прорыва газов через отверстие изолятора и одновременно выполняет роль резистора для подавления радиопомех. Для исключения утечки газов через резьбу корпуса служит уплотнительная шайба 24 из мягкого железа, которая зажимается между корпусом свечи и торцовой поверхностью гнезда в головке цилиндров
Зазор между электродами свечи должен находиться в пределах 0,7...0,8 мм. Он регулируется подгибанием бокового электрода 27. Регулировать зазор подгибанием центрального электрода не допускается, так как можно сломать юбку изолятора. При работе свечи происходит перенос металла с бокового электрода на центральный. В результате на боковом электроде образуется выемка, а на центральном — бугорок. Поэтому проверять зазор между электродами свечи необходимо не плоским, а круглым проволочным щупом.
Зазор между корпусом свечи и изолятором герметизирован с помощью стальной шайбы 25 и термоосадки корпуса. Термоосадка заключается в нагреве пояска корпуса (под шестигранником) токами высокой частоты до температуры 700...800° С и в последующей опрессовке корпуса усилием 20...25 кН. Шайба 25 одновременно служит и для отвода тепла от изолятора к корпусу, поддерживая температуру юбки изолятора на определенном уровне.
Температура изолятора при работе двигателя в основном зависит от длины юбки и от тепловой напряженности двигателя. Чем длиннее юбка, тем хуже теплоотвод от юбки к корпусу и тем «горячее» свеча. Оптимальная температура юбки изолятора должна быть в пределах 500...600° С. Если температура будет ниже 500° С, т. е. юбка короткая и свеча «холодная», то на юбке изолятора будет интенсивно отлагаться нагар. Если температура выше 600° С, то нагар будет сгорать, но в двигателе будет происходить преждевременное воспламенение горючей смеси от нагретой юбки, а не от искры. Такое явление называется калильным зажиганием. Оно проявляется стуками в двигателе и тем, что после выключения зажигания двигатель некоторое время продолжает работать.
Калильное зажигание явление вредное. Оно приводит к снижению мощности и к перегреву двигателя, к преждевременному износу его основных деталей, может быть причиной трещин на изоляторах свечей и выгорания электродов.
Чтобы оценить способность свечи к калильному зажиганию, в ее обозначении приводится калильное число — отвлеченная величина, пропорциональная среднему индикаторному давлению в цилиндрах двигателя, при котором наступает калильное зажигание. Его определяют на специальных одноцилиндровых двигателях путем постепенного увеличения рабочего давления (а следовательно и температуры) в цилиндре. Чем больше давление в цилиндре, при котором наступает калильное зажигание, тем больше калильное число, т. е. тем «холоднее» свеча.
Для каждой модели двигателя свеча зажигания подбирается индивидуально по калильному числу. Поэтому применять на автомобилях «Ока» какие-либо другие свечи, кроме указанных выше, не допускается.
Провода высокого напряжения
Провода передают импульсы высокого напряжения от катушки к свечам зажигания. Они могут быть двух марок: ПВВП-8 или ПВППВ-40. В связи с увеличенной толщиной изоляции они имеют наружный диаметр 8 мм вместо 7 мм у проводов обычной системы зажигания.
Сердцевина провода представляет собой шнур 32 из льняного волокна, заключенный в оболочку 31 из пластмассы с максимальным добавлением феррита. Поверх этой оболочки находится токопроводная обмотка из сплава железа и никеля. Такая конструкция провода имеет распределенное по длине сопротивление и уменьшает радиотелевизионные помехи. Сопротивление обмотки составляет 2000±200 Ом/м для проводов ПВВП-8 и 2550±270 Ом/м для проводов ПВППВ-40. Снаружи провод изолирован поливинилхлоридным пластикатом красного цвета (у проводов ПВВП-8) или облученным полиэтиленом синего цвета (провод ПВППВ-40).
Датчик момента искрообразования
1. Держатель переднего подшипника валика
2. Опорная пластина датчика
3. Экран
4. Ведомая пластина центробежного регулятора
5. Грузик
8. Ведущая пластина центробежного регулятора
7. Сальник
8. Валик
9. Муфта
10. Втулка заднего конца валика
11. Корпус вакуумного регулятора
12. Крышка вакуумного регулятора
13. Штуцер для подвода разрежения
14. Диафрагма
15. Кронштейн вакуумного регулятора
16. Тяга
17. Бесконтактный датчик
18. Корпус
19. Колодка штекерного разъема
20. Крышка
21. Подшипник
22. Втулка переднего конца валика
23. Войлочное кольцо
24. Полупроводниковая пластинка с интегральной микросхемой
25. Постоянный магнит
28. Реле зажигания
27. Выключатель зажигания
28. Блок предохранителей
29. Коммутатор
30. Датчик момента искрообразования
31. Катушка зажигание
32. Свеча зажигания
A. Угол опережения зажигания
Б. Момент зажигания в первом цилиндре
B. Момент зажигания во втором цилиндре
Г. в. м. т. поршней первого и второго цилиндров
I. Импульсы напряжения датчика
II. Импульсы тока на выходе коммутатора
III. Импульсы напряжения на выходе коммутатора
IV. Импульсы напряжения во вторичной цепи катушки зажигания
V. Импульсы тока во вторичной цепи катушки зажигания
а — угол поворота коленчатого вала двигателя
Датчик момента искрообраэования типа 5520.3706 служит для выдачи управляющих импульсов низкого напряжения на коммутатор. Он содержит центробежный и вакуумный регуляторы опережения зажигания и бесконтактный микроэлектронный датчик управляющих импульсов.
Датчик момента искрообраэования установлен на корпусе вспомогательных агрегатов (см. гл. 7) и приводится во вращение непосредственно от заднего конца распределительного вала через муфту 9. На муфте имеются два кулачка разной ширины, которые входят в соответствующие пазы распределительного вала, имеющие тоже разную ширину. Таким образом обеспечивается точное взаимное расположение распределительного вала и валика 8. Это необходимо для того, чтобы управляющие импульсы датчика по времени точно согласовывались с фазами рабочего процесса в цилиндрах двигателя (см. гл. 8).
Корпус 18 отлит из алюминиевого сплава. Валик 8 вращается в двух металлокерамических втулках 10 и 22. Втулка 10 запрессована в корпус и смазывается маслом, поступающим из системы смазки двигателя. Чтобы масло не проникало внутрь датчика момента искрообраэования, в корпусе установлен самоподжимной резиновый сальник 7. Втулка 22 окружена войлочным кольцом 23, пропитанным маслом, которого достаточно на весь срок службы датчика момента искрообразования. Осевой свободный ход валика 8 должен быть не более 0,35 мм. Он регулируется при сборке подбором толщины шайб, находящихся между муфтой и корпусом, а также между корпусом и ведущей пластиной 6 центробежного регулятора.
На валике расположены детали центробежного регулятора опережения зажигания: ведущая пластина 6 с двумя грузиками 5 и ведомая пластина 4. Ведущая пластина закреплена на валике, а ведомая вместе с экраном 3 составляет одно целое с втулкой, надетой на валик и зафиксированной на нем стопорной шайбой. К ведущей и ведомой пластинам прикреплены стойки, за которые зацеплены пружины, стягивающие пластины. Нижний конец одной из стоек на ведомой пластине является ограничителем. Он входит в паз ведущей пластины и не позволяет ведомой пластине поворачиваться относительно валика более чем на 16,5°.
При работе двигателя под действием центробежных сил грузики 5 расходятся, своими язычками упираются в ведомую пластину 4 и, преодолевая сопротивление пружин, поворачивают ее (а следовательно, и экран 3) относительно валика. Таким образом, экран 3 приводится во вращение не непосредственно от валика, а через грузики и может поворачиваться грузиками на 16,5° относительно валика.
Пружин, стягивающих пластины 4 и 8, установлено две. Они различаются своей упругостью. Пружина, имеющая большую упругость, установлена с небольшим натяжением и не дает грузикам расходиться при небольшой частоте вращения коленчатого вала. Центробежный регулятор вступает в работу при частоте вращения коленчатого вала более 1000 об/мин, когда центробежная сила грузиков начинает преодолевать сопротивление этой пружины. При более высокой частоте вращения вступает в действие и вторая пружина (более жесткая и установленная на стойках свободно). Этим обеспечивается заданное изменение угла опережения зажигания при разной частоте вращения коленчатого вала двигателя.
Вакуумный регулятор опережения зажигания закреплен на корпусе двумя винтами. Он состоит из корпуса 11 с крышкой 12, между которыми зажата гибкая диафрагма 14. С одной стороны к диафрагме крепится тяга 16, а с другой стороны находится пружина, отжимающая диафрагму с тягой в направлении вращения валика. Тяга 16 шарнирно соединена с опорной пластиной 2 датчика. Под действием разрежения диафрагма изгибается и через тягу поворачивает пластину 2 вместе с бесконтактным датчиком по часовой стрелке, т. е. против направления вращения валика. Опорная пластина 2 датчика установлена на шариковом подшипнике 21, запрессованном в держателе 1.
Бесконтактный датчик 17 закреплен винтами на пластине 2. Принцип его действия основан на использовании эффекта Холла. Он заключается в возникновении поперечного электрического поля в пластинке полупроводника с током при действии на нее магнитного поля. Датчик состоит из полупроводниковой пластинки с интегральной микросхемой 24 и постоянного магнита 25 с магнитол доводом. Между пластинкой и магнитом имеется зазор, в котором находится стальной экран 3 с двумя прорезями.
Когда через зазор датчика проходит тело экрана (см. рисунок), то магнитные силовые линии замыкаются через экран и на пластинку не действуют. Поэтому разность потенциалов в пластинке не возникает. Если же в зазоре находится прорезь экрана, то на пластинку полупроводника действует магнитное поле и с нее снимается разность потенциалов.
Интегральная микросхема, встроенная в датчик, преобразует разность потенциалов, возникающую на пластинке, в импульсы напряжения отрицательной полярности. Таким образом, когда тело экрана находится в зазоре датчика, то на его выходе имеется напряжение, примерно на 3 В меньшее напряжения питания. Если же через зазор датчика проходит прорезь экрана, то напряжение на выходе датчика близко к нулю (не более 0,4 В).
Работа системы зажигания
После включения зажигания замыкаются контакты «30» и «87» реле 26 зажигания. Через них от аккумуляторной батареи подается напряжение питания на один из низковольтных выводов катушки 31 зажигания, на штекер «4» коммутатора 29 и от его штекера «5» далее к бесконтактному датчику 17.
При прокручивании коленчатого вала двигателя стартером экран 3 вращается и датчик 17 выдает импульсы I прямоугольной формы на штекер «6» коммутатора, который преобразует их в импульсы II тока в первичной обмотке катушки зажигания. Ток сначала плавно возрастает до величины 8...9 А. а затем по сигналу датчика резко прерывается. Момент прерывания тока (соответствующий моменту искрообразования) определяется переходом импульса датчика с высокого уровня на низкий. При этом амплитуда импульсов III напряжения на выходном транзисторе коммутатора в момент прерывания тока достигает 350...400 В. Длительность импульсов тока зависит от частоты вращения коленчатого вала. При напряжении питания 14 В она уменьшается примерно с 8 мс при 750 об/мин до 4 мс при 1500 об/мин.
Ток, протекающий в первичной обмотке катушки зажигания, создает вокруг витков обмотки магнитное попе. В момент прерывания тока магнитное попе резко сжимается и, пересекая витки вторичной обмотки, индуктирует в ней ЭДС порядка 22...25 кВ. Ток высокого напряжения замыкается по пути: верхний высоковольтный вывод катушки 31 — свеча зажигания первого цилиндра — масса — свеча зажигания второго цилиндра — нижний высоковольтный вывод катушки зажигания. При этом происходит искровой разряд одновременно у двух свечей зажигания: первого и второго цилиндров. В одном из цилиндров в это время заканчивается такт сжатия и разряд поджигает горючую смесь, а в другом цилиндре в это время завершается выпуск отработавших газов и разряд происходит вхолостую.
Горючая смесь сгорает примерно за тысячные доли секунды. За это время коленчатый вал двигателя поворачивается на 20...50° (в зависимости от частоты вращения). Для получения максимальной мощности и экономичности двигателя необходимо воспламенять горючую смесь несколько ранее прихода поршня в в. м. т., чтобы сгорание закончилось при повороте коленчатого вала на 10...15° после в. м. т., т. е. искровой разряд должен создаваться с необходимым опережением.
При излишне раннем зажигании, когда угол опережения зажигания слишком большой, горючая смесь сгорает до прихода поршня в в. м. т. и тормозит его. В результате снижается мощность двигателя, возникают стуки, двигатель перегревается и неустойчиво работает при малой частоте вращения холостого хода. При позднем зажигании горючая смесь будет сгорать, когда поршень пойдет вниз, т. е. в условиях увеличивающегося объема. В этом случае давление газов будет значительно ниже, чем при нормальном зажигании, и мощность двигателя тоже понизится Кроме того, возможно догорание смеси в выпускном трубопроводе.
Чтобы сгорание топлива происходило своевременно, каждому числу оборотов двигателя необходим свой угол опережения зажигания. Начальный (установочный) угол опережения зажигания составляет 1°±1° (4°±1° для двигателей 11113) при частоте вращения коленчатого вала 820...900 об/мин. С увеличением частоты вращения угол опережения зажигания должен увеличиваться, а с уменьшением частоты — уменьшаться. Эту задачу выполняет центробежный регулятор опережения зажигания.
При увеличении частоты вращения валика грузики 5 под действием центробежных сил поворачиваются относительно своих осей. Язычки грузиков упираются в ведомую пластину 4 и, преодолевая натяжение пружин, поворачивают ее вместе с экраном 3 в направлении вращения валика на угол А. Теперь прорезь экрана проходит раньше (на угол А) через зазор датчика, и он раньше выдает импульс, т. е. опережение зажигания увеличивается. При снижении частоты вращения центробежные силы уменьшаются, и пружины поворачивают ведомую пластину 4 вместе с экраном против направления вращения валика, т. е. опережение зажигания уменьшается.
При изменении нагрузки на двигатель изменяется содержание остаточных газов в цилиндрах двигателя. При больших нагрузках, когда дроссельные заслонки карбюратора полностью открыты, содержание остаточных газов в рабочей смеси низкое, рабочая смесь богатая и сгорает быстрее, а зажигание должно происходить позже. При снижении нагрузки на двигатель (прикрытие дроссельных заслонок) количество остаточных газов увеличивается, рабочая смесь обедняется и горит дольше, поэтому зажигание должно происходить раньше. Корректировку угла опережения зажигания в зависимости от нагрузки на двигатель выполняет вакуумный регулятор опережение зажигания.
На диафрагму 14 этого регулятора действует разрежение, передаваемое из зоны над дроссельной заслонкой первичной камеры карбюратора. Когда дроссельная заслонка закрыта (холостой ход двигателя), отверстие, через которое передается разряжение на регулятор, оказывается выше кромки дроссельной заслонки и вакуумный регулятор не работает.
При небольших открытиях дроссельной заслонки в зоне отверстия появляется разрежение, которое передается вакуумному регулятору. Диафрагма 14 оттягивается и тягой 16 поворачивает опорную пластину 2 датчика против направления вращения валика. Опережение зажигания увеличивается. По мере дальнейшего открытия дроссельной заслонки (увеличение нагрузки) разрежение уменьшается, и пружина отжимает диафрагму в исходное положение. Опорная пластина датчика поворачивается в направлении вращения валика, и опережение зажигания уменьшается.